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Abstract

Atrial fibrillation (AF) is the most common sustained
arrhythmia, and its management requires accurate char-
acterization of atrial electrical activity. Electrocardio-
graphic imaging (ECGI) and deep learning (DL) methods
aiming at estimating electrograms (EGMs) noninvasively
from body surface potentials (BSPMs) are promising, but
progress is limited by the scarcity of paired BSPM–EGM
datasets. Thus, we explore variational autoencoders (VAE)
to generate synthetic EGMs training two models: a sinus-
only VAE (VAE-S) and a class-conditioned VAE (VAE-C)
trained on sinus rhythm and AF. Both models were eval-
uated through morphological, spectral, and distributional
similarity metrics. VAE-S achieved higher fidelity with real
signals, while VAE-C enabled rhythm-specific generation
at the cost of sinus quality. As a proof of concept, we
also assessed data augmentation in a downstream task:
noninvasive EGM estimation, where moderate inclusion
of synthetic signals improved performance. These results
demonstrate that VAEs can generate physiologically plau-
sible atrial EGMs, offering a promising tool to alleviate
data scarcity in noninvasive EGM estimation.

1. Introduction

Atrial fibrillation (AF), the most common sustained ar-
rhythmia, affects over 33 million people worldwide and
increases risks of stroke, heart failure, and mortality [1,2].
Current treatment uses invasive mapping to localize ar-
rhythmogenic substrates, usually near pulmonary vein os-
tia or regions of slowed conduction and reentry [3–5], but
remains limited by sparse sampling, long procedures, and
poor capture of transient or epicardial activity [6].

These challenges have motivated noninvasive strategies
such as electrocardiographic imaging (ECGI), which re-
constructs epicardial electrograms (EGMs) from body sur-
face potentials (BSPMs) and anatomical models by solv-
ing an ill-posed inverse problem [7]. More recently, deep
learning (DL) has been proposed to map BSPMs directly
to EGMs without explicit inverse formulations, though
progress remains limited by scarce paired BSPM–EGM

datasets [8].
In this study, we propose a self-supervised framework

for synthetic EGM generation using variational autoen-
coders (VAEs) for the first time, motivated by the use of
these models for other type of signal synthesis [9,10]. Our
contributions are: (i) learning morphology-preserving la-
tent representations using two convolutional β-VAE with
perceptual loss and annealed regularization, and (ii) gen-
erating synthetic EGMs for data augmentation in down-
stream noninvasive DL-based EGM estimation tasks un-
der sinus and AF conditions. The manuscript is organized
as follows: Section 2 presents methods, Section 3 reports
results, and Section 4 provides conclusions.

2. Methods

This section outlines the datasets, VAE architectures,
training procedures, and evaluation strategies used to gen-
erate synthetic EGMs and assess their impact on noninva-
sive reconstruction.

2.1. Dataset

Two datasets of intracardiac EGMs were used for this
study. Throughout the manuscript, we refer to real
EGMs as computational simulations of atrial activity ob-
tained from biophysically detailed electrophysiology mod-
els [11]. All real EGMs were simulated at a sampling rate
of 500 Hz from 2048 atrial sites and represent 2–4 seconds
of activity. Further details on the electrophysiological and
torso models are available in [11]. Synthetic EGMs, in
contrast, denote signals generated by our VAE models.

Dataset A - sinus only: This dataset consists of simu-
lated EGMs from 19 sinus patients, derived from realistic
atrial electrophysiology models. It was used to train the
VAE model for synthetic sinus signal generation.

Dataset B – sinus + AF: This dataset comprised EGMs
from the same 19 sinus patients plus 33 AF patients. It is
utilized for training a class-conditioned VAE to generate
both sinus and AF EGMs.

Computing in Cardiology 2025; Vol 52 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2025.284



2.2. Generative VAE for EGM Synthesis

Two different VAE architectures were explored for
EGM generation: one trained only on sinus rhythm data
(VAE-S) and one conditioned on rhythm class (VAE-C).

2.2.1. Generation Models and Architecture

VAE-S was designed to model the distribution of multi-
channel sinus rhythm EGMs. Input signals were reshaped
into 2D tensors (time × channels), with dimensions of
(400, 2048). The encoder consisted of successive convolu-
tional and pooling layers that compressed the inputs into a
50-dimensional latent distribution, parameterized by mean
and log-variance. Latent vectors were sampled using the
reparameterization trick, a mathematical technique used in
VAEs to enable gradient-based training through random
nodes [12]. The decoder reconstructed EGMs from the
latent space using transposed convolutions, intermediate
anti-aliasing filters, and a final tanh activation.

VAE-C extended the same encoder–decoder design to
both sinus and AF EGMs. Conditioning was introduced
by incorporating the rhythm class, which can be sinus or
AF, into the latent representation, guiding the decoder to
generate class-specific reconstructions.

2.2.2. Training Settings

For VAE-S and VAE-C, signals from Dataset A and
Dataset B (respectively) were normalized between −1 and
1 and downsampled to 200 Hz to optimize batch size. The
dataset was then divided into training (75%), validation
(15%), and test (10%) subsets using a random split for the
former and stratified split (class-wise) for the later. Both
models were trained using the Adam optimizer with an
initial learning rate of 0.001 and a batch size of 400 for
90 epochs, with early stopping at 10 epochs to avoid over-
fitting. A learning rate scheduler was applied to improve
convergence.

The VAEs were trained to minimize an objective loss
function that extends beyond the standard reconstruction
loss. In this work, we contribute additional perceptual
terms specifically designed to preserve the morphology, lo-
cal dynamics, and frequency content of real EGMs. The
resulting total loss objective is defined as:

LT = 0.35 · LR + β · LKL + 0.5 · LC + 0.35 · LG

+ 0.25 · LH + 0.10 · LS
(1)

where LR is the mean squared error (MSE) between
original and reconstructed EGMs, LKL is the KL diver-
gence between the approximate posterior and the prior,
where the parameter β was linearly increased from 0
to a maximum of 4.0 over the first 10 training epochs.

This gradual schedule mitigated posterior collapse in early
stages and progressively enforced latent space regulariza-
tion. For VAE-C, the latent prior was conditioned on
rhythm class using a one-hot encoding.

The perceptual terms were designed to capture comple-
mentary aspects of signal quality. The correlation loss LC
was computed as one minus the average Pearson corre-
lation coefficient between real and reconstructed signals
across nodes, emphasizing morphological similarity. The
gradient loss LG imposed a first-order temporal gradient
penalty to enforce similarity in local dynamics, particu-
larly during rapid transitions. The high-frequency loss
LH encouraged the preservation of sharp deflections, such
as atrial depolarizations, while the noise suppression loss
LS penalized spurious high-frequency components absent
from the original signal. All loss weights were tuned em-
pirically to maximize performance.

2.3. EGM Generation Strategies

After training, synthetic signals were generated by sam-
pling latent vectors z from the learned posterior distribu-
tion and decoding them into the time domain. For VAE-S,
200 synthetic signals were generated. RMSE was com-
puted pairwise between synthetic and real signals, retain-
ing for each synthetic the minimum value as its similar-
ity score. The 25 signals with the lowest scores were se-
lected to form the synt-S-Dataset. For VAE-C, genera-
tion was performed separately for each rhythm class, yield-
ing the synt-C-Dataset, comprising 50 signals (25 sinus-
conditioned, 25 AF-conditioned).

2.4. Evaluation

We evaluated VAE performance by (i) intrinsic fidelity
metrics on test set, and (ii) testing their utility for dataset
augmentation in a downstream noninvasive EGM recon-
struction task.

Fidelity metrics: To assess the similarity between syn-
thetic and real EGM signals, we employ metrics captur-
ing both sample-level and distributional alignment. At
the reconstruction level, we report MSE, where smaller
values indicate closer signals; KL divergence, which in-
creases with distributional mismatch; log-spectral distance
(LSD), where lower values denote better spectral similar-
ity; and Pearson correlation, where values close to 1 in-
dicate strong linear similarity. To evaluate distributional
alignment, we compute the maximum mean discrepancy
(MMD) with smaller values reflecting closer distributions.
Finally, to qualitatively assess coverage and separation in
the learned latent space, we project both real and synthetic
samples using t-distributed stochastic neighbor embedding
(t-SNE).

Downstream Task: Noninvasive EGM estimation was
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performed using the DL pipeline in [13]. First, dataset B
was split into training (75%), validation (15%), and test
(10%) sets using a stratified split (class-wise) ensuring that
samples reserved for testing in the generation task were
also included in the test set. To assess the impact of syn-
thetic data, we defined two augmentation scenarios for the
training set. In the first (V AE − S@k), Dataset B was
augmented with k synthetic sinus rhythm signals from the
synt-S-Dataset, with k ∈ {10, 14, 18, 20, 25}. In the sec-
ond (V AE − C@kS + kAF ), Dataset B was augmented
with kS synthetic sinus and kAF synthetic AF signals from
the synt-C-Dataset, where kS , kAF ∈ {10, 14, 18, 20, 25}.
Two settings were explored, i) targeted augmentation of
kS , only augmenting sinus rhythm, ii) symmetric augmen-
tation of kS and kAF , including both sinus and AF in-
stances. Then, synthetic EGMs from the synt-S and synt-C
datasets were projected to BSPMs via the forward model,
producing paired BSPM–EGM samples that were concate-
nated with real data in the training set. To prevent bias,
real and synthetic signals were alternated during training.
To evaluate the fidelity of estimated EGM signals from
BSPMs, we compute Pearson correlation and RMSE be-
tween the reconstructed and ground-truth signals.

3. Results and Discussion

Next, we present VAE performance, in terms of genera-
tion fidelity metrics and impact on a downstream task.

3.1. EGM Generation Performance

This section reports fidelity metrics from EGM gener-
ation using VAE-S and VAE-C. For synthetic EGM gen-
eration with VAE-S, the model obtained a mean LSD of
2.39 ± 0.32 and a correlation of 0.56 ± 0.09 with real
signals, confirming reasonable frequency and morphol-
ogy fidelity. Distributional similarity was assessed with
MMD, yielding an average score of 0.27. The learned la-
tent representation exhibited an average KL divergence of
0.45 ± 0.06, with 24 active units out of a total latent di-
mensionality of 50, indicating that the model effectively
utilized part of the latent capacity while avoiding posterior
collapse. Some examples of generation as 1d signals in
Fig. 1.

For synthetic EGM generation with VAE-C, the model
achieved a global LSD of 2.66 ± 0.39 and correla-
tion of 0.13 ± 0.06, indicating moderate frequency- and
morphology-level fidelity. For AF, distributional similar-
ity was stronger (MMD 0.19) than for sinus (MMD 0.56),
suggesting more consistent generative performance in the
AF domain. Latent representations showed a KL diver-
gence of 3.35 ± 1.68, with 33 active units out of 50 con-
firming robust class separation. The t-SNE projection of
the latent space, shown in Fig. 2 revealed a clear separa-
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Figure 1. Synthetic signals produced by VAE-S. Dashed
lines: real signals (reference). Solid lines: synthetic sig-
nals. The x-axis represents time samples (corresponding
to 2 seconds), the y-axis to normalized amplitude.

tion between AF and sinus rhythm representations. This
indicates model successfully learned discriminative latent
features associated with each rhythm type.

Compared to VAE-S, sinus generation with VAE-C was
degraded, with lower reconstruction fidelity and higher
distributional divergence. Thus, class conditioning en-
abled AF generation but at the cost of reduced realism in
sinus signals, as expected.

Figure 2. t-SNE projection showing two distinct clusters
corresponding to AF and sinus classes

3.2. Downstream Task

The results for V AE−S@k (Table 1) show that adding
synthetic sinus EGMs improved reconstruction over the
baseline (k = 0). Gains were most evident with moderate
augmentation (k = 14–18), while larger sets (k = 20–25)
plateaued or slightly degraded, suggesting redundancy or
bias in the training data.

Table 1. Mean correlation (Corr) and RMSE of ground
truth vs estimated EGMs from BSPMs for VAE-S@k,
VAE-C@kS , and VAE-C@kS , kAF (mean ± std).

VAE-S@k VAE-C@kS VAE-C@kS , kAF

k Corr RMSE Corr RMSE Corr RMSE

0 0.160 ± 0.169 0.559 ± 0.103 0.160 ± 0.169 0.559 ± 0.103 0.160 ± 0.169 0.559 ± 0.103
10 0.183 ± 0.175 0.543 ± 0.095 0.156 ± 0.163 0.542 ± 0.086 0.146 ± 0.146 0.543 ± 0.092
14 0.175 ± 0.177 0.527 ± 0.071 0.166 ± 0.169 0.527 ± 0.082 0.151 ± 0.155 0.523 ± 0.072
18 0.207 ± 0.201 0.519 ± 0.082 0.169 ± 0.180 0.523 ± 0.082 0.132 ± 0.125 0.556 ± 0.086
20 0.198 ± 0.201 0.555 ± 0.096 0.175 ± 0.175 0.546 ± 0.087 0.138 ± 0.149 0.521 ± 0.066
25 0.214 ± 0.206 0.541 ± 0.097 0.186 ± 0.182 0.535 ± 0.088 0.116 ± 0.130 0.540 ± 0.072

Page 3



The results in Table 1 shows mean correlation and
RMSE in test set for V AE−C@kS and V AE−C@kS +
kAF . Augmenting with sinus-only generations in V AE −
C@kS shows a gradual improvement over the baseline,
with correlation increasing from 0.16 to 0.186 at k = 25,
and RMSE remaining relatively stable. This suggests that
adding synthetic sinus signals enhances overall reconstruc-
tion, even when the generative model has been trained on
both classes. In contrast, the symmetric augmentation in
V AE − C@kS + kAF did not yield consistent benefits:
performance fluctuates across k, and correlation values re-
main generally lower than for V AE − C@kS. These re-
sults indicate that, at least in this setting, targeted augmen-
tation of sinus signals is more effective than symmetric
augmentation across classes, likely because the variabil-
ity introduced by AF generations does not translate into
global reconstruction gains.

Figure 3. Mean correlation and RMSE for sinus rhythm
and AF across augmentation settings

As shown in Fig. 3, reconstruction metrics by class
(rhythm) reveal that V AE−C@kS improves sinus perfor-
mance but remains below V AE−S@k, which achieves the
highest correlation and lowest RMSE due to its specializa-
tion. In contrast, V AE−C@kS + kAF introduces fibrilla-
tory variability that slightly benefits AF, though at the ex-
pense of sinus accuracy. Overall, this indicates a trade-off:
VAE-S is optimal for sinus augmentation, whereas VAE-C
provides a slightly better balance across rhythms.

4. Conclusions and Limitations

We presented a VAE-based framework for generating
synthetic atrial EGMs to address data scarcity. VAE-S
achieved higher fidelity with sinus signals, while VAE-C
enabled AF-specific generation with clear class separation
but reduced sinus quality. This trade-off suggests that us-
ing separate networks for each rhythm type may enhance
performance. Synthetic EGMs also improved data aug-
mentation. Main limitations are the small dataset, lim-

ited physiological variability, and few test patients. Future
work will focus on exploring advanced training strategies,
like including spatial information of EGMs.
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